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Background and Significance 

IPUMS-MLP will consist of nine censuses covering the entire U.S. population enumerated 

between 1850 and 1940 linked with public historical administrative data from Social Security, the 

military, and vital registration. The linked database will be invaluable for analyzing the impact of 

early life conditions on health and well-being in later life, and the large scale of the resource will 

allow study of very small population subgroups. IPUMS-MLP is not designed to answer any 

particular scientific question. Rather, we plan general-purpose data infrastructure, a permanent 

resource that can be continuously expanded to incorporate the latest data sources as they 

become available, ensuring its usage for decades to come.  

Former Census Bureau Director Robert Groves drew an insightful distinction between 

“designed data” and “organic data” [1]. Designed data, such as censuses and surveys, are 

created entirely to obtain information. Organic data are byproducts of transactions, including 

administrative records generated by Social Security, Medicare, the Internal Revenue Service, and 

the Armed Forces. Research on population aging currently relies primarily on designed data, 

despite the enormous potential of organic data to enrich our analyses. Groves argued that “the 

biggest payoff will lie in new combinations of designed data and organic data, not in one type 

alone.” Used in isolation, organic data have profound limitations that reduce their usefulness. 

They tend to be voluminous but shallow; they often are unrepresentative of the general 

population; and they frequently omit basic information about demographic behavior, economic 

status, education, work, and living conditions. IPUMS-MLP will enrich large sources of organic 

data—including Social Security, Medicare, and military records—by linking them to a century of 

designed census and survey data, thereby overcoming limitations of the organic data sources. 

Linking individuals from childhood to old age and death through both designed and organic 

data allows study of aging as a process over the entire life course, not just over a few years. 

Indeed, IPUMS-MLP will enable investigators to extend longitudinal analysis beyond individual 
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life histories to investigate and understand processes of change over multiple generations [2]. In 

his 2010 presidential address to the Population Association of America, Robert Mare [3] argued 

that “the study of intergenerational mobility and most population research are governed by a two-

generation (parent-to-offspring) view of intergenerational influence, to the neglect of the effects of 

grandparents and other ancestors and nonresident contemporary kin.” Mare called for the 

development of sources and methods that will support analysis of change over multiple 

generations. IPUMS-MLP will meet this need, allowing investigators to trace records back across 

multiple generations and making it possible for the first time to study the transmission of 

characteristics and behavior across centuries. 

Limitations of Current Record Linkage Practices.  Researchers have been linking censuses 

together since the 1930s by manually matching individuals located on microfilmed enumeration 

forms. This laborious process yielded very small samples and was subject to substantial selection 

bias [4]. In December 2013, IPUMS released complete-count machine-readable census 

enumerations for nine census years from 1850 to 1940. These new historical data, covering 

almost 700 million individual records, are the fruit of collaboration between IPUMS and the world’s 

two largest genealogical organizations—Ancestry.com and FamilySearch—to leverage 

genealogical data for scientific purposes [5]. Under agreements with those organizations, 

anonymized datasets are freely available to researchers, and restricted datasets including names 

and addresses are available under contracts that safeguard the proprietary interests of the 

genealogical organizations that donated the data. 

As soon as the complete-count data with names became available in late 2013, 

economists and sociologists began developing methods for automated record linkage to construct 

longitudinal panels. At this writing, some 400 researchers are working on 148 research projects 

linking these datasets. This work has resulted in a flood of new research papers assessing the 

impact of early-life environmental and health conditions on later-life outcomes, as well as the 
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effects of education policy, multi-generational economic mobility, and the causes and 

consequences of migration [4]. 

The ferment of new research is exciting, but serious technical problems have arisen. Few 

investigators are well versed in advanced record linkage methods, and few have access to the 

software or high-performance computing needed for reliable large-scale linkage. Most studies use 

off-the-shelf statistical packages to do the matching, forcing compromises that reduce the 

reliability of the links. Moreover, most analyses are necessarily small scale, focusing on such 

groups as Norwegian immigrants, Southern migrants, persons born in a particular cohort, or 

persons known to have contracted childhood illnesses. Finally, the resulting datasets are 

sometimes proprietary, creating large barriers to new research in this area.  

Record linkage is subject to two kinds of errors: false matches (or Type I errors) and 

missed matches (or Type II errors).1 False match rates are the greatest concern, because these 

Type 1 errors introduce systematic upward biases in transition rates, such as migration rates, 

economic mobility, family transitions, or fluidity in racial identification. Suppose, for example, that 

an investigator seeks to measure migration. Falsely matched cases usually appear to be 

migrants, since two incorrectly linked individuals are unlikely to reside in precisely the same place. 

Recent analyses have demonstrated that the most commonly used methods of automatic 

record linkage—which are usually based on phonetic classifications of names—have false match 

rates ranging from 20% to 70% [4, 7-8]. Such high error rates generally produce invalid estimates 

of transition rates. For example, Nix and Qian [9] randomly chose one match whenever their 

algorithm produced multiple tying matches. This approach gave them a very high match rate but 

an extremely high false-match rate, estimated by Bailey et al. at between 52% and 70% [7]. Nix 

                                                

1 In most of the computer science linkage literature, the level of Type I and Type II errors is 
measured according to the “precision” and “recall” metrics, which are expressed as success rates 
instead of error rates [6]. 
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and Qian used their linked data to argue that 19% of black men “passed” for white at some time 

during their lives and that 10% then reverted to identifying as black. In view of the high potential 

for false matches in the Nix and Qian methodology, we view this result with skepticism. 

Missed matches are also problematic, since they can introduce selection bias and reduce 

the representativeness of longitudinal panels. Most linkage studies measure missed matches 

poorly, using methods biased by mortality and outmigration. Analysts should measure missed 

matches relative to the population with the potential to be matched, which is the population 

present and alive in each source being linked. To mitigate the impact of selection bias resulting 

from missed matches, studies should then weight longitudinal panels to match key characteristics 

of the potentially linkable population, including ethnicity, economic status, education, lifetime 

migration, demographic characteristics, and family status. Few linkage studies execute these 

steps correctly. 

Linking forward from IPUMS-MLP to modern data sources. Use of IPUMS-MLP will not be 

limited to historical analysis of change in the period from 1850 to 1940. Within restricted 

environments designed to protect privacy, investigators will be able to trace individuals from 

IPUMS-MLP forward to modern surveys, censuses, and administrative records. This capacity is 

critical, allowing a prospective view of population aging. IPUMS-MLP will provide access to the 

childhood environments and family backgrounds of people who are now old.2 It will be easily 

linkable to modern survey data through an ongoing NIA-funded project to link five modern surveys 

of health and aging to the 1940 census and to modern administrative records, censuses, and 

surveys through the existing Census Longitudinal Infrastructure Project (CLIP). We are closely 

                                                

2 IPUMS-MLP uses only data sources that are fully in the public domain. Most of these records were made 
public by the National Archives and are now freely available through Internet search engines. As explained 
in the section on Human Subjects, the project poses no additional threat to privacy whatsoever. Under 
federal law, this includes federal censuses that are at least 72 year old; Social Security records for persons 
who have died; and military records from the two World Wars. We will also use historical vital records whose 
confidentiality varies from state to state.  
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coordinating our plans with these two ongoing data infrastructure projects to ensure that they will 

be able to seamlessly link IPUMS-MLP to modern sources. The potential of IPUMS-MLP to 

address current problems in aging and health is not confined to these two projects; rather they 

serve to illustrate the potential for transformative research offered by IPUMS-MLP.  

Linking 1940 U.S. Census Data to Five Modern Surveys of Health and Aging. John Robert 

Warren is leading an NIA-funded effort (1R01 AG050300) to link records from the 1940 census 

to respondents of the Health and Retirement Study (HRS); the Panel Study of Income Dynamics 

(PSID); the Wisconsin Longitudinal Study (WLS); the National Social Life, Health, and Aging 

Project (NSHAP); and the National Health and Aging Trends Study (NHATS). These ongoing 

longitudinal studies are the cornerstones of America's data infrastructure for interdisciplinary 

research on aging and the life course, including topics such as physical and mental health, 

disability, and well-being; later-life work, economic well-being, and retirement; and end-of-life 

issues. A crucial weakness of these surveys is that they contain little information about social, 

economic, family, neighborhood, and environmental circumstances in childhood and young 

adulthood. The sparse early-life information now available was usually collected retrospectively, 

and the quality of these reports is largely unknown. This serious limitation of these data hinders 

researchers' ability to study the long-term impacts of childhood and young adult circumstances 

and to understand how later-life outcomes are the result of cumulative life-course processes. 

Linking these studies to the 1940 census vastly expands the analytic utility of the surveys for a 

variety of substantive problems. Because IPUMS-MLP will link the 1940 census backwards to 

1930, 1920, and earlier censuses, the project will allow construction of a wide range of variables 

describing the family background of survey respondents through multiple generations, further 

enriching these crucial surveys. 

Census Longitudinal Infrastructure Project (CLIP). CLIP is a major infrastructure project 

established by the Census Bureau’s Data Stewardship Executive Policy Committee in August 
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2014. Housed in the Census Bureau’s Center for Administrative Records Research and 

Applications (CARRA) [10-12], CLIP is developing a general framework for longitudinal analysis 

of administrative and statistical records.  

The 1940 census provides the baseline population for constructing millions of life histories 

in CLIP. The 1940 census is particularly valuable because it was the first to provide key indicators 

such as educational attainment and income and is the only census ever to include these inquiries 

for the entire population. In the CLIP infrastructure, designed data from censuses and surveys 

are linked to organic data from Social Security Administration, Medicare, and other administrative 

records. The first CLIP goal is therefore to assign Protected Identification Keys (PIKs) to each 

person in the IPUMS 1940 census file. The PIKs uniquely identify individuals across data sources 

for the purposes of improving data quality and program efficiency, and they are used within a 

secure Census Bureau computing environment to maintain confidentiality. To assign the PIKs, 

the Census Bureau has developed powerful tools for uniquely identifying individuals in census 

and administrative datasets, which serve as the underpinning for the CLIP linkage strategy. To 

date, CLIP has positively identified 72% of children age 0-9 who appear in the 1940 census [7]. 

CLIP data are allowing investigators to understand the origins of late life outcomes among people 

who reached age 65 between 1995 and 2005 and who are now aged 77 to 87; nine projects 

based on CLIP are already underway in Federal Statistical Research Data Centers. The Census 

Bureau obtained the machine-readable 1940 census from IPUMS, and therefore IPUMS-MLP will 

include exactly the same 1940 census records as CLIP. This will make it easy for the Census 

Bureau to join the two databases and create a powerful longitudinal resource spanning the period 

from 1850 to the present. Linked CLIP-MLP datasets will be available to researchers through the 

Federal Statistical Research Data Centers. 
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Research Opportunities. Linking IPUMS-MLP to modern surveys and administrative 

records will open extraordinary new opportunities for longitudinal research on population health 

and aging.3 Thousands of innovative analyses will be feasible; consider the following use cases:  

• Impact of exposure to water-borne lead before age three on Late Onset Alzheimer's Disease 

(LOAD). Prince [13] has suggested that lead might be an environmental source of a 

predisposition toward LOAD. This conjecture has been borne out in animal experiments but 

has not been assessed in human populations due to lack of information on lead exposure 

under age three, the period of greatest sensitivity identified in animal experiments. The 

IPUMS-MLP database can provide information about lead exposure in early childhood for 

millions of Medicare recipients through the well-known relationship between water pH and its 

plumbosolvency [14], and LOAD can be observed in the HRS or through CLIP linkages to 

Medicare records [15-16] and to the National Health Interview Survey. 

• Intergenerational transmission of health and well-being over multiple generations. The 

relationship between outcomes for one generation (education, income, health) and those for 

earlier or later generations in the same family line has been examined in the U.S. almost 

exclusively in a two-generation (parent-child) context. This limitation is largely due to the 

paucity of data linking three or more generations [17-18]. With the 1940 Census as the 

keystone, IPUMS-MLP can be linked with the PSID or with IRS records through CLIP, 

permitting researchers to analyze both (1) the influence of up to six previous generations on 

an individual's outcomes, potentially revealing the extent to which two-generation research 

has understated the persistence in outcomes across generations, and (2) trends over more 

than 150 years in two-generation mobility. 

                                                

3 IPUMS-MLP will also enrich historical databases, especially the NIA-funded Early Indicators project 
(P01AG010120).  
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• The receipt of Mothers’ Pension benefits in childhood and later-life economic status, health, 

and well-being. Aizer et al. [19] show a strong causal link between the receipt of Mothers’ 

Pensions (the pre-1930 forerunner of AFDC/TANF) and a range of improved outcomes for 

children, such as healthy weight, higher income, and increased longevity. IPUMS-MLP and 

CLIP will together allow us to identify additional effects of early-life income support across the 

life course—on cognition, labor force participation, asset accumulation, and health at older 

ages—as well as the mechanisms through which these effects are produced. 

• The impact of early-life cognitive capacity on later-life health and economic outcomes. 

Research into the role of cognitive measures on later-life earnings, health, and longevity in 

the U.S. has not been possible for large populations because no records connect cognitive 

testing early in life to census or administrative records on later life outcomes. There are 

machine-readable IQ scores for 500,000 U.S. male enlistees in World War II [14] that will be 

incorporated into IPUMS-MLP, allowing investigators to use CLIP to follow these individuals 

through census and health records from their childhood through late life and death.  

Approach 

When linking backwards from a more recent census to an older one, we can generally 

identify the potentially linkable population in the more recent census. The potentially linkable 

population between any pair of censuses is defined as the population of the terminal census year 

that was old enough to be present in the initial census year and that did not immigrate between 

the two census years. There are five main reasons for failing to locate potentially linkable persons 

in the earlier census: (1) Name changes: especially common when women marry but which may 

also occur because of name Anglicization or for other reasons; (2) Enumerator error in recording 

names or other characteristics; (3) Census underenumeration; (4) Transcription error; and (5) 

Multiple valid links: two or more persons exist with similar or identical linking characteristics. 

Because there are multiple opportunities for errors to be introduced, the linking algorithm must 



9 
 

accommodate approximate matches on a probabilistic basis. Planning and design of the linking 

algorithm must consider not only optimization of links but also computational efficiency; some 

techniques are extraordinarily computationally intensive and would be infeasible for a project of 

this scale if used on their own [6].   

The sections that follow begin with description of our preliminary studies. We then explain 

the innovative record linkage strategies needed to produce a longitudinal resource of 

unprecedented scale. We present our new linkage technologies and algorithms. We then describe 

our approach to software development, dissemination, sustainability, metadata, project 

management, evaluation, and deliverables. 

Preliminary Studies. The IPUMS-MLP research team has been engaged in developing 

automatic record linkage technology for the past two decades. Our most substantial previous 

linkage project completed is the IPUMS Linked Representative Samples (IPUMS-LRS) [20-21].  

From 2002 until 2014, only one complete U.S. census enumeration—the 1880 census—

was available to the research community. Over the course of two decades, volunteers of the 

Church of Jesus Christ of Latter-Day Saints (LDS) transcribed the entire population of the U.S. 

enumerated in the 1880 Census, a total of 50 million records. Working in collaboration with LDS, 

IPUMS converted this transcription into a source suitable for demographic research by correcting 

errors and coding millions of different alphabetic strings describing population characteristics into 

numeric categories [22]. The complete-count LDS database created an opportunity to link the 

1880 census to historical IPUMS census samples covering 1% of the population for the period 

1850 through 1930.  

IPUMS-LRS designed procedures to minimize false links and maximize the 

representativeness of the linked cases, instead of maximizing the number of links. Most prior 

record linkage efforts, we argued, had focused too much attention on the percent of persons 
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missed by record linkage (Type II errors) and not enough on the percent of false links (Type I 

errors). Failing to identify links can lead to selection bias, but investigators can measure that bias 

and mitigate it by applying weights to make the linked cases representative with respect to 

observed characteristics. False matches, by contrast, can lead to systematic upward bias in 

migration rates, occupational mobility, and all kinds of family transitions. The IPUMS linked 

samples aimed to maximize both accuracy and representativeness. To minimize selection bias 

with respect to key transitions such as migration or widowhood or occupational change, we 

focused on a limited set of characteristics not expected to change over the life course: name, birth 

year, sex, and birthplace. 

IPUMS-LRS linked datasets on a probabilistic basis using the Jaro-Winkler string 

comparison metric developed by the Census Bureau [23] and a machine learning algorithm known 

as a Support Vector Machine [24-25]. The machine learning software was “trained” with a set of 

hand-linked data developed by IPUMS staff. The probabilistic machine-learning software (1) 

compared every person of a given cohort, birthplace, and sex with every other person (in a census 

sample) that shared those characteristics and (2) predicted the probability of a true match based 

on similarity scores of several features, such as spelling of first name and last name, first and 

middle initials, phonetic name codes, name commonness, and age. By adopting conservative 

linking thresholds, IPUMS-LRS minimized false matches [20-21, 26]. Under the IPUMS-LRS 

linking procedure, whenever more than a single potential match was found, all potential matches 

were eliminated from consideration. To weed out false matches, IPUMS-LRS developed two 

models. The “loose” model was designed to maximize the number of potential links. The “tight” 

model was more selective, and established matches only where the fit was extremely close. Links 

were designated as true only if there was one and only one positive link in both models [20,27]. 

This approach sacrifices valid links to minimize false links and maximize representativeness. The 

loose model excludes cases with an observed possibility of choosing the wrong match, and the 
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tight model excludes cases with any significant discrepancies in name or age. The samples were 

weighted to approximate the characteristics of the potentially linkable population with respect to 

family relationship, birthplace, age, size of place, and occupation. The conservative design of 

IPUMS-LRS yielded false match rates well below 5%, which is low relative to prior intercensal 

linkage procedure [4, 7, 20]. Lifetime interstate migration (from birth to the census) and family 

transition rates are consistent with estimates based on other methods, providing strong evidence 

that IPUMS-LRS yields unbiased and reliable estimates of life-course transitions [20, 26]. IPUMS-

LRS was the first project to implement a machine learning approach to historical census record 

linkage and provided invaluable lessons for the larger project we are now implementing [4]. 

IPUMS-LRS has limitations that limit its usefulness for longitudinal analysis of health and 

aging. Most important, only two observations are available for each linked individual. Moreover, 

because the strategy relied on census samples, the linked datasets are small. The new IPUMS-

MLP will include a thousand times as many links across nine complete-count censuses, Social 

Security, military, and vital records.   

IPUMS-MLP also builds on the work of two other research projects that are currently 

engaged in historical record linkage research. A project under the leadership of J. David Hacker 

(R01 HD082120) is developing models of demographic and health changes following military 

conflict. As part of this analysis, Hacker is working on linkages of the 1850 through 1880 complete 

count censuses. The software developed for this linkage work will served as the foundation for 

the IPUMS-MLP linkage software. As described below, have enhanced the Hacker software by 

improving computational efficiency and implementing new linking strategies. The second project 

is the Longitudinal Intergenerational Family Electronic Micro-Database (LIFE-M) project 

underway at the University of Michigan under the direction of Martha Bailey [28]. The goal of LIFE-

M is to link records of births, marriages, and deaths for people born between 1880 and 1930 to 
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construct life histories of demographic events. As explained below, LIFE-M will help IPUMS-MLP 

with the difficult problem of linking women who marry and change names.  

Linking Strategy. We plan a multi-stage linking process, with three major components: (1) A 

deterministic linked panel based on cases verified by multiple linked persons within a household 

and/or multiple linked persons within an immediate neighborhood. Our preliminary analysis 

demonstrates that this deterministic panel will match approximately 50% of cases with virtually 

zero false matches. (2) A probabilistically linked representative sample of the remaining unlinked 

population, using machine-learning technology that capitalizes on the deterministic links for 

training and evaluation. (3) An augmented panel that adds information from administrative records 

to enable linking of women who marry in the interval between censuses and enrichment of the 

database with additional variables. Figure 1 provides a schematic of the three processing stages. 

Figure 1. Multigenerational Record Linkage Workflow 

 

1. Deterministic Panel. The deterministic panel will consist of cases in which there are 

multiple matches within a particular household or among immediate neighbors. Matching multiple 

people within the same unit effectively eliminates false matches. One of the greatest challenges 

of intercensal record linkage is that there are often multiple potential matches for a given 

individual. For example, the 1880 census lists 44 white men named John Smith who were born in 

New York State in 1848. Just one of these John Smiths was married to a Mary Smith and had a 
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son who was also named John Smith. If we add the fact that Mary was born in Wisconsin in 1854 

and John Jr. was born in 1878, the odds of a coincidental match are infinitesimal. This example 

is just about the worst-case scenario, since John and Mary Smith were the two most common 

names, and New York was the most common state of birth. The combination of name, age, sex, 

race, and birthplace for a group of at least three individuals yields trillions of permutations, which 

would be virtually impossible to match by chance.  

We are finalizing rules for these matches based on blocking strategies (dividing the 

population into subgroups based on broad similarity), Jaro-Winkler string-comparison metrics for 

names, and rules governing the similarity of birth years and birthplaces. This approach is 

computationally demanding since it involves trillions of comparisons; as described below, 

however, we have now overcome the problem of scale through the application of innovative 

technology, and we expect to process the links on the IPUMS high-performance computing 

cluster. We will begin by matching each pair of decades, working backward from 1940 (i.e., 1940-

1930, 1930-1920, and so on). We will then make matches over 20-year intervals to capture cases 

that were missing or poorly enumerated in a particular census year (e.g., 1940-1920, 1930-1910, 

and so on). We will create an identity key, a unique identifier for each individual who appears in 

more than one census year, which will provide a linking key to match persons over multiple census 

years.  

The deterministic procedure can link approximately half of individuals without a significant 

number of false matches. The resulting panel, however, is unrepresentative, since it 

systematically excludes persons who migrate without family members, a group that represents a 

significant and theoretically important segment of the population. The verified deterministic panel 

will be suitable for many purposes, such as analysis of fertility limitation and child mortality. It is 

less suitable for other applications, since it will tend to underrepresent migration, occupational 

mobility, and family dissolutions.  
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2. Probabilistic Representative Panel. The second iteration of the linked panel will address 

the problem of representativeness. We will use probabilistic machine learning procedures to link 

a representative subset of the cases that we were unable to link in the deterministic pass. Our 

approach in this phase is conceptually similar to IPUMS-LRS, but we will rely on newly developed 

technology to maximize efficiency and accuracy. Following the procedures of IPUMS-LRS, 

linkages in this stage will be based exclusively on characteristics that are not expected to change 

over the life-course: names (except for women who marry), birth year, sex, race, birthplace, and 

birthplaces of parents.4 For some census years, we can also use information on year of 

immigration, mother tongue, or age at first marriage. We will not use any characteristics that are 

expected to change over the life course, such as place of residence or the characteristics of co-

resident family members.  

The probabilistic panel will rely on machine-learning technology (described below), so we 

need accurate training data so that the software can learn the combinations of characteristics 

associated with true matches. The deterministic panel will provide a massive set of highly-reliable 

training data. Because we will have complete enumerations rather than samples at both ends of 

each linked pair of censuses, we will be able to identify and exclude multiple matches at either 

end of any linked pair of censuses and thus further reduce the low false-positive rate achieved by 

IPUMS-LRS. We will filter the results to eliminate matches with contradictory information, such as 

a completely inconsistent set of kin in the two censuses. Despite this aggressive elimination of 

false matches, we anticipate that our new technology (described below) will successfully match 

approximately 20% of the previously unlinked cases. 

As noted, the potentially linkable population between any pair of censuses is the 

                                                

4 Respondents may report any of these characteristics differently in different censuses. For example, they 
may change their names for reasons other than marriage, and some change their racial or ethnic identities 
[29]. The matching algorithms described below can accommodate imperfect matches, but fluid responses 
will reduce linkage rates. 
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population of the terminal census year that was old enough to be present in the initial census year 

and that did not immigrate between the two census years. In most intervals, we can directly 

identify the immigrants using information in the census; for the rest, we can develop estimates of 

the potentially linkable population using immigration statistics. The Representative Panel will 

include all the linked individuals in the Deterministic Panel, and thus non-migrants and persons 

with stable families will be overrepresented. To overcome this problem, we will weight the linked 

representative panel by iterative proportional fitting (raking) to match the characteristics of the 

potentially linkable population with respect to age, sex, race, family relationship, presence of kin, 

state/country of birth, lifetime migration, size of place, and occupation.  

3. Linked Administrative Records. The census-only linked panel has limitations. Most 

important, it loses women who marry and change their names during the interval between 

censuses. By linking to additional sources for our third panel, we can achieve more accurate and 

comprehensive links between censuses. In addition, other sources can provide additional 

variables as well as extra detail on events occurring between censuses.  

Our core administrative source will be a new public version of the Social Security 

Applications and Claims Index (Numident) available through the National Archives [30]. The public 

version of the Numident includes persons with a Social Security number who either had died or 

who would have reached age 110 by 2007. The Numident records include each Social Security 

applicant’s full name, maiden name, exact dates of birth and death, place of birth, place of death, 

citizenship, sex, father's name, mother's maiden name, and race/ethnic description. We will use 

the Numident to follow women, even those who marry in the interval between two censuses, from 

their families of origin to the families in which they reside as adults. Thus, a 40-year-old woman 

observed in the 1940 census can be located in her parents' household in the 1910 census. 

Because her mother's maiden name is also given in the Numident and her mother's birthplace 

and birth year are known from the 1910 census, the mother can in turn be located in the 1880 
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census. The Numident will dramatically improve linkage rates for married women, and because 

linking can be done with a public version of the Numident, links generated in this way can be 

publicly disseminated without restrictions. 

A second key administrative source will be the Longitudinal Intergenerational Family 

Electronic Micro-Database (LIFE-M) currently under development at the University of Michigan 

[28]. LIFE-M is reconstituting families by linking vital records. Beginning with birth certificates from 

1881 to 1930, LIFE-M is matching the birth records to marriage records and death records. By 

constructing family histories across multiple generations, LIFE-M will allow researchers to study 

processes of demographic change in unprecedented detail. We can link LIFE-M to IPUMS-MLP 

using information on place of residence at the census nearest to a vital event, as well as name, 

spouse’s name, birth year, birthplace, and sex, all of which are available in both sources. Once 

we have established links between LIFE-M and IPUMS-MLP, we can use the LIFE-M data to 

refine and augment the IPUMS-MLP links, particularly for women who change their names at 

marriage. In addition, the availability of exact birthdates in LIFE-M will also aid in disambiguating 

links to the 1900 census, which provides month and year of birth, and to the Numident, which 

provides exact birthdate. LIFE-M will not only help to improve IPUMS-MLP; in addition, links from 

IPUMS-MLP will flow back to LIFE-M. The chief limitation of LIFE-M is that the availability of vital 

records limits the states and periods that it covers, but we anticipate that the scope of the 

database will expand as additional vital records become available in machine-readable form. 

We will also link IPUMS-MLP to draft and enlistment records from World War II and draft 

records from World War I [31-32]. These records can be linked using information on place of draft 

registration as well as name and birth year, and the military sources will provide additional 

variables, including exact date of birth and exact place of birth. (The census records only state of 

birth for the U.S.-born or country of birth for the foreign-born). 
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Linking Process. Our linking process will consist of the following elements: name 

cleaning, blocking, string comparison, machine learning, high-performance processing, and 

assignment of identity keys. 

Name cleaning. Record linkage begins with software for parsing and standardizing names.  

While names are the most important piece of information available for record linkage, they are 

also the most problematic. Errors in naming can arise from respondent error (as when, for 

example, a farm wife responding to an enumerator misstates the name of a farm hand), 

enumerator error, or transcription error.  Moreover, names often change over time; they 

sometimes lack standard spelling; and in some cases, people were enumerated using a nickname 

or middle name in one census and a formal first name in another.   

To minimize error from these sources, we are implementing a comprehensive program of 

name cleaning, accounting for common typographical transpositions and handwriting recognition 

errors. We standardize given names to account for diminutives and abbreviations (e.g., “Willie” 

and “Wm.” are transformed into “William”). This work draws on a rich body of research on name 

cleaning [33-37]. We also employ phonetic name coding, a standard tool for record linkage since 

the 1930s. The most commonly used systems are Soundex, NYSIIS, and Phonex. We rely mainly 

on the Double Metaphone system, which returns two encoded strings corresponding to variant 

pronunciations [38-39]. 

Blocking. Every pair of records drawn from two files is either a match referring to a single 

individual or is a non-match describing two different persons. Optimal matching requires that 

every individual be compared with every possible match [40]. It is not computationally feasible, 

however, to evaluate every potential match; implementation of such a linking algorithm for the full 

1850-1940 datasets would involve about 2.5 x 1017 comparisons. To reduce the computational 

requirements, we introduce “blocking factors” that define a subset of the population and limit 
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comparisons to persons who share the same blocking factors. For IPUMS-LRS, the blocking 

factors were state of birth, sex, and a seven-year window of birth year.  

Our most important means of improving record linkage efficiency is to greatly reduce the 

size of the blocks. We will do this mainly by classifying first and last names into blocks. The danger 

of small blocks is that they may miss true matches. Thus, for example, a one-character 

transcription error could eliminate a valid match from consideration in a blocking system based 

solely on first initials. Accordingly, we are designing multiple overlapping small blocks that in 

combination capture all plausible links. We have shown that blocking by surname bigrams—

successive pairs of letters—we can capture nearly 100% of potential matches with a 75% 

reduction in the number of comparisons needed. We are continuing our experimentation and 

expect to improve on these results [41]. 

String Comparison. As we did for IPUMS-LRS, we plan to use the Jaro string comparator 

as modified by Winkler for name comparison [28]. This algorithm computes a similarity measure 

between 0.0 and 1.0 based on the number of common characters in two strings, the lengths of 

both strings, and the number of transpositions, accounting for the increased probability of 

typographical errors towards the end of words. The other linking variables—birthplace, parental 

birthplaces, age, sex, and race—pose few string comparison problems because those variables 

are already classified and numerically coded according to the IPUMS coding system.  Thus, for 

example, we will not have to cope with the innumerable spelling variations of Massachusetts.  We 

will, however, develop an algorithm for age misreporting that can account for digit preferences: 

inconsistencies in age between two census years should be partly discounted if age is rounded 

to a five or zero in one or both census years. 

Machine Learning. We will implement machine learning algorithms to optimize the quality 

of links. IPUMS-LRS used an algorithm known as a Support Vector Machine (SVM) to classify 

each possible match [41-44] using an open-source library of tools developed by Chang and Lin 
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[24]. For IPUMS-MLP, we will test newer machine learning strategies to identify the optimal 

solution. Our preliminary testing shows that a random forest has the potential to reduce false 

positives by two percentage points [45]. To optimize linkage, we will test cutting-edge strategies 

of random forests (an ensemble classification method based on many decision trees) as well as 

unsupervised collective graph matching [46]. Finally, we will assess recently proposed active 

learning techniques for record linkage [47], which have out-performed fully-supervised SVM and 

Decision Trees in recent matching tests. 

To estimate the matching parameters, we need training data, namely, cases where the 

true links are known. We plan to use training data developed from genealogical sources. To 

estimate error rates in the record linkage, we divide the training data in two, using part to estimate 

the parameters for machine learning and the rest to test the linking algorithm to estimate both the 

rate of false positive matches (Type I errors) and omitted true matches (Type II errors). 

High Performance Record Linkage Technology. The project will develop and implement 

technical solutions that can accommodate the massive scale of the database. Our largest 

previous linkage project, IPUMS-LRS, was tiny compared with IPUMS-MLP. IPUMS-LRS was 

nevertheless highly computationally-intensive, requiring the use of 900,000 core-hours of 

supercomputing time provided by the Minnesota Supercomputing Institute using a Silicon 

Graphics Altix XE 1300 Linux cluster with 2048 compute nodes and 4TB of main memory. IPUMS-

MLP will include approximately 2,000 times as many links as IPUMS-LRS. All things being equal, 

the number of computing operations required for record linkage is proportional to the square of 

the number of links being processed. If we used the same procedures as for IPUMS-MLP as we 

did in IPUMS-LRS, we would need about four million times as much computing power. That scale 

of computing simply does not exist. Accordingly, we have taken steps to improve the efficiency of 

our linking strategies. 
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We have developed new highly-efficient linking software, known as Hlink [47]. HLink was 

designed to overcome limitations of existing linkage software. Existing record linkage tools are 

available as libraries for common data manipulation languages such as R, Python, and Java. 

These libraries present an array of features such as preprocessing techniques, indexing 

techniques, supervised and unsupervised learning techniques, and rudimentary graphical user 

interfaces. The existing software creates features from datasets that exist of individual records, 

and a large amount of custom data manipulation is required beforehand to use contextual 

household information [49]. Moreover, existing software makes it difficult to use multiple nodes 

and little support for parallel processing [50].  

To overcome these limitations, Hlink provides a single end-to-end linking solution, 

replacing a multi-stage process used for IPUMS-LRS that involved multiple programs (e.g., 

FEBRL, LIBSVM, C, statistical packages) and data formats (e.g., flat ASCII files, MySQL, binary 

files). The system leverages Apache Spark, a Hadoop-based technology. Spark enables parallel 

processing in all stages of record linkage. We ingest the data into Apache Parquet, a columnar 

storage database format that improves read access for sequential files compared with 

conventional relational databases. We use Apache Spark’s support for the Parquet storage format 

tied to a record shredding and assembly algorithm to optimize parallel processing [51-53]. There 

are small pieces of functionality written in Scala for custom transformations that were not available 

in the standard Spark library. The database was created with Apache Hive, which is built into 

Spark, and all files are stored using the parquet file format. Using these technologies, we have 

already improved query execution speed by two orders of magnitude. These innovations—in 

combination with the efficient new blocking strategies described above—give us the computing 

power we need to construct the world’s largest longitudinal population panel. 

Identity Keys. A unique identity key will consistently identify individuals in every sample in 

which they are found. At each stage of record linkage, we will begin with the 1940 census; linking 
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backwards from more recent censuses to earlier ones avoids linkage failure due to mortality or 

emigration. We will assign an identity key to each individual age 10 or older in the 1940 census. 

We will link 1940 backwards to each of the prior census years, assigning Identity keys to 

individuals in the prior censuses whenever we successfully establish a link.  

We will then turn to the 1930 census, successively linking backwards from 1930 to each 

previous census year. When we establish a new link, we will assign the 1940 Identity key 

whenever it is available. If no Identity key exists (because the individual in 1930 was not linked to 

1940), we will generate a new key as needed. In this fashion, we will proceed backwards from 

census to census until we have established links between every possible combination of census 

years. At the conclusion of this process, there are bound to be some inconsistencies.  We will 

reconcile all inconsistencies using rule-based and probabilistic strategies, ensuring that all keys 

identify only a single individual across all censuses. 

For each individual, we will also construct variables identifying the linking keys for 

spouses, mothers, fathers, up to four grandparents, and up to eight great-grandparents. These 

interrelationship keys will be available in all census years; so, for example, a future spouse will 

be identifiable when the individual is still a child. Siblings will be identified because they share a 

parental linking key, cousins because they share a grandparent key, and so on. Accordingly, the 

family interrelationship variables will not only be valuable for assessing family influences across 

multiple generations but will also allow study of lateral kin relationships beyond the household. 

Dissemination. Data sharing is central to the project: effective dissemination is essential 

if the data are to be widely used. Each data release will appear in two formats: (1) a public version 

without names or character strings available at ipums.org and (2) a restricted version with names 

and addresses available by license. We also anticipate that the Census Bureau will make the data 

available to researchers through the Federal Statistical Research Data Centers (FSRDCs) once 

it is linked with recent administrative records and surveys.  
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Under our agreement with Ancestry.com, the original string data (including the names) are 

limited to access through restricted licenses. Accordingly, the public use IPUMS-MLP will not 

include names or character strings of any kind; all variables will be numerically coded. The 

restricted version, with full names and addresses, will be made available to researchers who sign 

a restricted data license and agree to keep the data highly secure.  

We will distribute the public data and documentation through a web-based data access 

system that will construct customized longitudinal files designed according to user specifications. 

Because of the large scale of the data, we must provide efficient subsetting and data manipulation 

capabilities. We plan to build a web-based dissemination system that will produce linked extracts 

in a variety of formats incorporating any combination of census years. The IPUMS data access 

system pioneered web-based dissemination of large-scale datasets, and the IPUMS 

dissemination tools continue to innovate at the cutting edge of information technology. We will 

leverage that software for IPUMS-MLP. The system for disseminating the linked data will offer 

advanced capabilities for navigating documentation and defining datasets that capitalize on the 

longitudinal structure of the data.  

We will disseminate customized datasets as ASCII text files and in the proprietary formats 

of the major statistical packages (Stata, SAS, SPSS, and R). We will provide online data analysis 

tools for those who do not wish to download the data. With each dataset, we will provide a 

customized codebook in Data Documentation Initiative (DDI) structured XML format with a 

stylesheet allowing users to view the codebook in a web browser. We will also disseminate more 

comprehensive documentation (such as instructions for enumeration of each variable) through 

our data access system. We will release all software used for the project under an open-source 

license, both for purposes of documentation and to enable researchers to apply our linking 

methods to other datasets.  
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